

FilmArray The Fastest Way to Better Results

FilmArray®

- Easy Two minutes of hands-on time
- Fast Results in about 1 hour
- Comprehensive
 - RP(호흡기)- 20 targets (17 viruses & 3 bacteria)
 - BCID(혈액배양)- 27 targets (19 bacteria, 4 yeast & 3 antibiotic resistance genes)
 - GI(장관)- 22 targets (13 bacteria, 4 parasites & 5 viruses)
 - •
- Closed System risk of contamination is reduced
- Molecular Diagnostics Increased sensitivity and specificity

FilmArray 동영상

• 유튜브 : bioMerieux, 장비이름으로 검색!

: 비오메리으의 다양한 제품 동영상을 보실 수 있습니다~ 예) filmarray

https://www.youtube.com/watch?v=7Vq4S9 EHHq

FilmArray[®]

Presentation Overview

- The Product Knowledge
- The Panels
- The System
- The Workflow
- The advantage

FilmArray®
The fastest way to better results.

THE PRODUCT KNOWLEDGE

The FilmArray Pouch

Sample Prep - Hydration

Hydration Solution:

- Molecular grade water
- Used to Hydrate the pouch

Sample Prep - Lysis

Sample Buffer:

- Breaks open virus particles
- Weakens cell walls
- Contains Guanidinium HCL and detergent
 - One of the most chaotropic substances
 - *chaotropic이란?

disrupts the structure of, and denatures, macromolecules such as proteins and nucleic acids (e.g. DNA and RNA).

(Step1.) Purification Nucleic Acids

Reverse Transcription:

- Enzymatic conversion of RNA to DNA
- Required because PCR will not work on RNA

Amplification - nmPCR

1st Stage PCR:

- 1 large (140ul) reaction
- Massively Multiplexed
 - 36 primer pairs (RP)
- Occurs in 2 blisters
- 1 peltier device uniformly heats both blisters
- 27 cycles
- No detection

*Reverse Transcription(RT) PCR로 2nd stage PCR에 필요한 Template를 만드는 단계

2nd Stage PCR:

- 102 (1ul) reactions
- Nested singleplex reaction
 - 1 primer pair in each
- Occurs in 102 wells in the array
- 1 peltier device uniformly heats entire array
- 30 cycles
- Melting analysis using LC Gree n Plus Detection
- *실제 target 검출을 위한 PCR 단계

Automated Results Analysis

•Detection using LC Green Plus like SYBR Green

- •102 individual 2nd stage PCR wells
- •Each well contains one reaction RSV
- •Melt curves generated for each well
- •All targets tested in triplicate
- •Internal Control(IC) control whole process
 - ✓ RNA Process Control
 - √ 2nd stage PCR

43

THE PANELS

Respiratory Panel(RP) FDA Cleared to better results.

(상기도 호흡기 패널)

Viral (감기 및 독감바이러스)

Adenovirus

Coronavirus 229E

Coronavirus HKU1

Coronavirus OC43

Coronavirus NL63

Human Metapneumovirus Human Rhinovirus/

Enterovirus

Influenza A

Influenza A/H1

Influenza A/H1-2009

Influenza A/H3

Influenza B

Parainfluenza 1 Parainfluenza 2 Parainfluenza 3 Parainfluenza 4 RSV

Bacterial (백일해 및 폐렴)

Bordetella pertussis

Chlamydophila pneumoniae

Mycoplasma pneumoniae

* FDA-Cleared for the first time

RP Market Need Cont.

FilmArray

- Respiratory bacteria and viruses have very similar symptoms, but are treated differently!
 - ➤ Bacteria: Antibiotics(항생제) Viruses: Antivirals(항바이러스제)

Symptoms Include:

- Acute pharyngitis
- Pain in joints
- Fever
- Chills
- •Malaise and fatigue
- Headache
- Shortness of breath
- Wheezing
- Cough
- Painful respiration

RP 시료 swap 방법

FilmArray[®]

Blood Culture Identification FilmArray® Panel FDA Cleared (혈액배양 패널)

Gram + Bacteria:

Enterococcus

L. monocytogenes

Staphylococcus

S. aureus

Streptococcus

- S. agalactiae
- S. pyogenes
- S. pneumoniae

Antibiotic Resistance

(항생제내성 유전자 검출) mecA (methicillin)

Van A/B (vancomycin)

KPC (Carbapenem)
* FDA-Cleared for the first time

Gram - Bacteria:

- A. baumannii
- H. influenzae
- N. meningitidis
- P. aeruginosa

Enterobacteriaceae

Enterobacter cloacae complex

E. coli

K. oxytoca

K. pneumoniae

Proteus

S. marcescens

Yeast:

C. krusei

C. parapsiolosis

C. tropicalis

BCID Market Need: Sepsis(패혈증) FilmArray®

Systemic inflammatory response syndrome (SIRS) in response to infection

can lead to organ failure and death: 패혈증으로 죽음에 이를 수도 있음!

Sepsis is the 11th leading cause of death in U.S.

Caused primarily by three main groups of microbes:

gram-positive bacteria gram-negative bacteria yeast (*Candida* sp.)

Complicated by antimicrobial resistance

Other terms: septicemia, bacteremia, fungemia (cand idemia), bloodstream infection

*패혈증이란?

: 미생물에 감염되어 전신에 심각한 염증 반응이 나타나는 상태

FilmArray FilmArray FilmArray FilmArray FilmArray Pathogen ID + mecA, vanA/B, KPC Approx. 1 Hr. Pathogen ID + AST Pathogen ID + AST Pathogen ID + AST Pathogen ID + AST

FilmArray BCID gives answers faster – but cannot give all of the answers. Standard testing must be completed, especially for antimicrobial susceptibility testing. BCID can NOT determine susceptibility to antimicrobials.

10

FilmArray Gl Panel FDA Cleared(장관 패널)*식중독균포함

Bacteria:

Campylobacter

Clostridium difficile (Toxin A/B)

Plesiomonas shigelloides

Salmonella

Vibrio (parahemaemolyticus, vulnificus and cholerae) Vibrio cholerae

Yersinia enterocolitica

Diarrheagenic E. coli / Shigella

Enteroaggregative *E. coli* (EAEC) Enteropathogenic *E. coli* (EPEC)

Enterotoxigenic *E. coli* (ETEC)

Shiga-like toxin-producing *E. coli* (STEC)

E. coli 0157

Shigella/Enteroinvasive E. coli (EIEC)

* FDA-Cleared for the first time

Protozoa:

Cryptosporidium

Cyclospora cayetanensis

Entamoeba histolytica

Giardia lamblia

Viruses:

Adenovirus F 40/41

Astrovirus

Norovirus GI/GII

Rotavirus A

Sapovirus (I, II, IV and V)

Market Needs: Gastrointestinal Infections

- Diarrhea(설사) is defined as an alteration in normal bowel movement, and is characterized by an increase in water content, volume or frequency of stools¹
 - "Acute diarrhea" is an episode lasting ≤14 days1
 - "Persistent diarrhea" describes episodes lasting >14 days¹
- Diarrhea is usually caused by infection of the gastrointestinal (GI) tract1 : 설사는 주로 환경 및 음식물에 있는 세균 또는 바이러스가 위장관을 통해 감염되어 발병

Infection of the GI tract may also produce symptoms of nausea, vomiting and/or abdominal cramps1

Sample Type

시료는 Stool

시료 채취 및 운반은 stool용 배지인 Cary-Blair Transport medium이용

23

After all panels are FDA-cleared, FilmArray will have assays covering 125 of the most common pathogens that cause death and disease.

THE SYSTEM

25

The SystemHow the FilmArray Works

- FilmArray는 '추출 & 증폭 & 검출 ' 을 한번에 할 수 있는 system,
- Running time 1hr!
- PC 1대에 장비 ~8대까지 연결 가능

Sample Prep

Amplification

Detection

The SystemHow Results are Reported

PCR raw data도 볼 수 있음

- ✓ Amplification curve
- ✓ Melting peak

27

The System

Throughput and capacity

		Number of Instruments			
		1	2	3	4
Lab Operating Hours	8 hours	7	14	21	28
	16 hours	14	28	42	56
	24 hours	21	42	63	84

THE WORKFLOW

29

Workflow

To avoid contamination <u>always wear gloves</u> and work behind a protective shield.

Step 1: Prepare Pouch

- Insert pouch into Pouch Loading Station.
 Place Sample Injection Vial into red well.
- Place Hydration Injection Vial into blue well.

Step 2: Hydrate Pouch

- Twist off Hydration Injection Vial, leaving cap in Pouch Loading Station, and insert into pouch hydration port.
- Forcefully push down to puncture seal and wait as Hydration Solution is drawn into pouch.

33

Step 3: Prepare Sample Mix

- Add Sample Buffer to Sample Injection Vial:
 - · Invert Sample Buffer Ampoule so that tip is facing up.

Note: Do not touch the tip of the ampoule.

- Firmly pinch textured plastic tab on side of ampoule until seal snaps.
- With the tip facing down, dispense Sample Buffer into Sample Injection Vial using a slow, forceful squeeze, followed by a 2nd squeeze. Avoid generating excessive bubbles.
- Thoroughly mix stool specimen in transport media.
- Using transfer pipette, draw up specimen to 2nd line.
- Add to Sample Injection Vial.
- Tightly close lid of Sample Injection Vial.
- Mix sample by gently inverting Sample Injection Vial 3 times.
- Return Sample Injection Vial to red well of Pouch Loading Station.

Warning: The Sample Buffer is harmful if swallowed, can cause serious eye damage and/or skin irritation.

Step 4: Load Sample Mix

- Unscrew Sample Injection Vial from cap.
- Pause for 3-5 seconds, then remove Sample Injection Vial, leaving cap in Pouch Loading Station.
- Insert Sample Injection Vial into pouch sample port.
- Forcefully push down to puncture seal.
- Wait as Sample Mix is drawn into pouch.

35

Step 5: Run Pouch

- Follow instructions on computer for initiating a test.
- The pouch will click into place when properly seated.

Note: If the pouch does not insert easily, ensure that the lid is opened completely.

THE ADVANTAGE

37

FilmArray Advantage

- TimeCostLabor
- Multiple tests at once
- Easy to use