개 포 지 하 차 도 배 수 펌 프 장 개 량 공 사 설 계 용 역 종 합 보 고

2011. 11

서울시설관리공단

목 차

제 1 장 과업의 개요1
1.1 과업의 명칭1
1.2 과업의 개요 및 범위1
1.2.1 과업의 배경 및 목적1
1.2.2 과업의 개요1
1.2.3 과업의 범위1
1.3 소요사업비2
1.3.1 소요사업비2
1.3.2 제원조달계획3
1.3.3 예정공정표 3
제 2 장 현황분석4
2.1 현황분석 4
2.1.1 개포지하차도 침수유량 추정 ···································
2.1.2 기존시설 현황
2.2 현황분석 및 대책안
2.2.1 현황분석 ····································
2.2.2 대책안 8
제 3 장 실시설계 ·······10
3.1 기계설비분야 10
3.1.1 펌프시설계획
3.1.2 펌프설비목록 13
3.1.3 펌프용량계산14
3.1.4 신설 토출배관 관경산정
3.1.5 펌프배치도 14
3.2 토목분야 16
3.2.1 개요16
3.2.2 토목공사 개요도 17

제 1 장 과업의 개요

1.1 과업의 명칭

-개포지하차도 배수펌프장 개량공사 설계용역

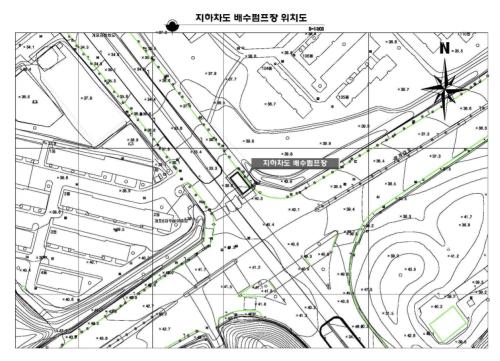
1.2 과업의 개요 및 범위

1.2.1 과업의 배경 및 목적

-본 과업의 목적은 2011.7월 국지성 집중호우로 구룡산 주변 산지의 우수가 토사 및 수목 등을 동반 유출되면서 인근 배수기능을 마비시킨 후 개포지하차 도로 다량 유입된 사례와 같이 불가항력적인 사유로 지하차도가 침수될 경우에 대비, 배수시간을 단축하여 신속하게 도로기능을 회복하도록 지하차도와 연계된 배수 구조 등을 고려하여 배수펌프 용량확대 등 적정한 대책 방안을 강구하기 위함

1.2.2 과업의 개요

<표1-1> 공사개요


구 분	공 종	사업내용	비 고
개포지하차도	기계설비 공사	펌프, 기존배관 이설 및 신설 , 벨브설비 설치	개량
배수펌프장	토목공사	토출배관공사, 기존 우수관로 맨홀신설 연결, 굴착복구 및 기타 제반공사	/ II O

1.2.3 과업의 범위

- 가. 자료수집 및 현장조사
- 나. 지하차도로 유입되는 유역면적 및 유출량 산정
- 다. 배수펌프 형식 및 용량 산정 (토출관 및 유입관 포함)
- 라. 토출관로 설치 방법 및 주변 배수용량 검토
- 마. 토출관로 설치관련 굴착에 따른 지지력 검토 (가시설 설치 등)

바. 공사시 안전대책이나 유지관리시 특별한 관리가 요구되는 사항

사. 기타 발주기관이 필요하다고 요구하는 사항

<그림 1-1> 과업위치도

1.3 소요사업비

1.3.1 소요사업비

- 본 개포지하차도 배수펌프장 개량공사에 소요되는 사업비는 다음과 같다. <표1-3> 소요사업비 (단위: 원)

	구 분	그 액	비고
	개포지하차도 배수펌프장 개량공사	_	
1.	총사업비	74,024,000	
2.	도급비	39,226,000	
	공급가액	35,548,000	
	폐기물처리	112,000	
	부가가치세	3,566,000	
4.	관급자재	34,798,000	

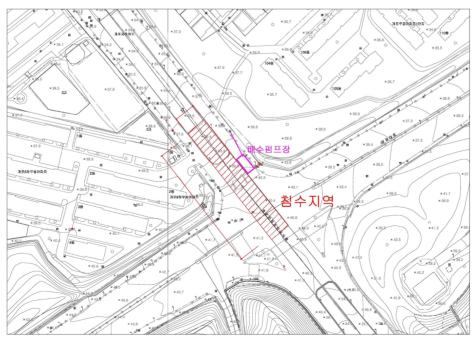
1.3.2 제원조달계획

- 본 개포지하차도 배수펌프장 개량공사의 총 소요자금은 000.000 백만원으로 예상되며, 소요자금의 재원 전액은 서울시설관리공단에서 조달하는 것으로 한다.

1.3.3 예정공정표

<표1-2> 공사예정공정표

-7	u	규		1기	월		비
구	七	격	1주	2주	3주	4주	고
(발주 5	정 협 의 및 공사착수)	1식					
2. 개 _포 개량	돈지하차도	1식					
•7]	계공사	"					
	·펌프제작 (관급자재)	"					
	·기계설비공 사	"					
	시운전 및 펌프성능검사	"					
•토	목공사	1식					
	• 가시설공	"					
	• 관로공	"					
	• 맨홀공	"					
	• 포장공	"					
2. 준	공						`


제 2 장 현황분석

2.1 현황분석

- 2.1.1 개포지하차도 침수유량 추정
 - 가. 배수펌프 가동시간을 이용한 침수유량 추정
 - 2011.7월 국지성 집중호우로 구룡산 주변 산지의 우수가 토사 및 수목 등을 동반 유출되면서 인근 배수기능을 마비시킨 후 개포지하차도로 다량 유입 침수
 - 정확한 침수유량을 측정할수 없음
 - 기존 펌프시설을 이용하여 8hr 운전후 전량 처리
 - 기존 펌프시설 용량을 활용하여 침수유량 추정
 - $2.5 \,\mathrm{m}^3/\mathrm{min} \times 60 \,\mathrm{min} \times 8\mathrm{hr} \times 2 \,\mathrm{EA} = 2.400 \,\mathrm{m}^3$
 - $4.0 \,\mathrm{m}^3/\mathrm{min} \times 60 \,\mathrm{min} \times 8\mathrm{hr} \times 1 \,\mathrm{EA} = 1,920 \,\mathrm{m}^3$

합 계 = 4,320 m³

나. 기존 수치지도를 이용한 침수유량 추정

<그림 2-1> 개포지하차도 침수지역(추정)

- 기위 <그림2-1>과 같이 개포지하차도 침수구역을 대략적으로 나타냈으며 그 면적은

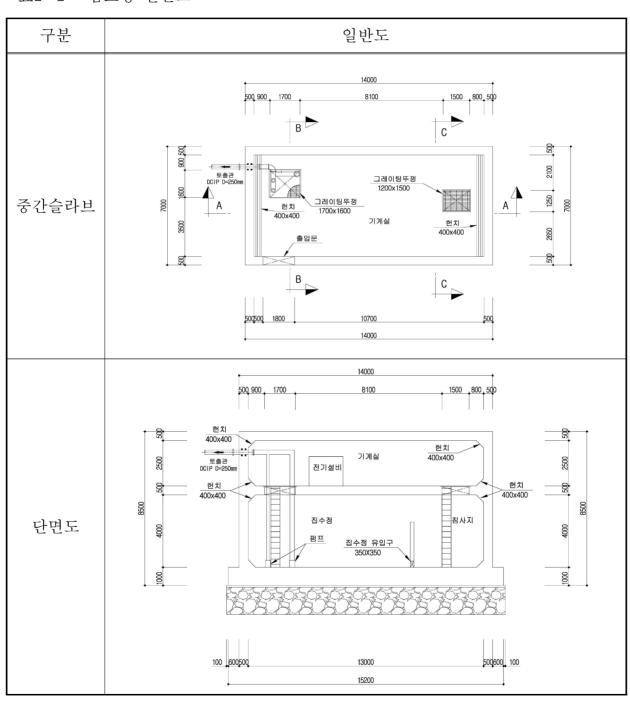
18m(차도폭) × 100m(침수구간 길이) = 1800 m²

- 개포지하차도 내부에 1.5m 정도 가량 침수되어 전체적인 침수유량을 추정해 보면 아래 <표2-1>과 같이 나타났다.

<표2-1> 전체 침수유량 산정

- 약 1.5 m 침수
- 지하차도 침수량 1800 m² × 1.5 m = 2,700 m³
- 펌프장 집수정 침수유량 = 386.26 m³
- 수치지도로를 이용한 침수유량 추정량
 - = 지하차도 침수량+집수정 침수량
 - $= 2,700 \text{ m}^3 + 386.26 \text{ m}^3$
 - $= 3.086.26 \text{ m}^3$
- 개포지하차도 침수유량은 1안과 2안의 평균값인 약 3,700㎡으로 추정되며 펌프시설 설계시 안전율을 고려하여 약 4,000㎡ 의 침수유량을 선정하여 계획 하였다
- 2.1.2 기존시설 현황
 - 가. 기존펌프용량

<표2-2> 기존펌프현황


구분	펌프용량 및 양정	소요동력	수량	동력
펌프1	5.0 m³/min × 10mH	20HP	1	15kw
펌프2	5.0 m³/min × 10 mH	20HP	1	15kw
펌프3	5.0 m³/min × 15mH	30HP	1	22kw

- 현재 배수펌프장의 펌프용량은 15m³/min 으로 설계되어 있으나 실질적인 토출유량은 9m³/min 정도의 유량이 처리되고 있는 실정임. 따라서 원활한 도로

기능 회복을 위해 추가적인 배수펌프시설의 개량이 필요한 것으로 판단됨 나. 토출구경

- 현재 배수펌프장에서 토출되는 토출구경은 D250mm STS관으로 설치 되어 있다.
- 다. 펌프장 일반도

<표2-2> 펌프장 일반도

2.2 현황분석 및 대책안

2.2.1 현황분석

- 2011.7월 국지성 집중호우로 구룡산 주변 산지의 우수가 토사 및 수목 등을 동반 유출되면서 개포지하차도로 다량의 우수가 유입되었으며 이로 인해 지하차도구간이 침수되어 차량의 소통이 원활 못으며, 기존 펌프를 사용하여 8시간의 가동으로 침수된 지하차도를 복구할수 있었다.
- 윗장에서 언급한 내용 중 현재 배수펌프장의 펌프용량은 15㎡/min 으로 설계되어 있으나 실질적인 토출유량은 9㎡/min 정도의 유량이 처리되고 있는 실정임.
- 따라서 개포지하차도로 유입되는 우수를 배제하고 차량의 원활한 소통을 위해 4시간의 가동을 하였을 경우 펌프용량을 검토하였다.
 - 펌프 운전현황
 - * 기존펌프를 활용하여 4hr 운전시 배제유량 산정 기존펌프1 + 기존펌프2 + 기존펌프3 = 9m³/min = 9m³/min × 60min/hr × 4hr = 2.160 m³
 - * 신설펌프 4hr 운전시 배제유량 산정 침수추정량 - (기존펌프1+기존펌프2+기존펌프3) = 신설펌프사용 배제유량 4,000 m³ - 2,160 m³ = 1840 m³
 - 신설펌프의 용량계산 1,840m³ ÷ 60min/hr ÷ 4hr = 7.75 m³/min
- 기존펌프를 활용한 배제유량을 제외한 나머지 유량을 배제하기 위해 최소 7.75㎡/min의 용량을 가진 펌프를 신설해야 하는 것으로 나타났음
- 하지만, 이는 기존펌프 3기의 토출관로 상이, 연결관로에서 오는 손실수두 및 각 펌프의 상이한 양정으로 인한 와류현상, 펌프 노화로 인한 성능저하, 메인 토출관로의 용량부족 및 경로 등 각종 손실요인 내재 등과 같은 문제점으로 인해 기존펌프의 설계유량인 15㎡/min의 성능을 발휘하지 못하는 것으로 판단되어짐
- 따라서, 기존 펌프의 성능향상을 도모하기 위해 각펌프의 양정을 맞춰 기존펌프의 성능을 최대한 발휘할수 있도록 유도하였고 각펌프의 성능이 최대한 발휘될수 있다는 가정하에 추가적으로 5㎡/min ×15mH(30HP)의 펌프를 추가설치하는 것으로 계획하였다.

2.2.2 대책안

<표2-3> 펌프조합에 의한 토출관경 결정

구 분	1안 (설계안)	2안 (발주처 기본안)
펌프조합	1) 기존 5.0㎡/min(20HP×10m) × 2EA 2) 기존 5.0㎡/min(30HP×15m) × 1EA + 신설 5.0㎡/min(30HP×15m) × 1EA → 신설관로 연결	1) 기존 5.0㎡/min(20HP×10m) × 2EA + 기존 5.0㎡/min(30HP×15m) × 1EA → 신설관로 연결 2) 신설 5.0㎡/min(30HP×15m) × 1EA
개요도	고체펌프 5㎡/min 20Hp 10mH 기mH 25m/min 30Hp 15mH	교체펌프 5m'/min 20Hp 10mH 고체펌프 5m'/min 20Hp 10mH 지존평프 5m'/min 30Hp 15mH
토출 구경 산정	1) 기존 5.0㎡/min(20HP) × 2EA → 기존 토출관(D=250mm) 사용 2) 기존 5.0㎡/min(30HP) × 1EA + 신설 5.0㎡/min(30HP) × 1EA $D = 146\sqrt{\frac{Q}{V}} = 146\sqrt{\frac{10}{3.0}}$ = 266 = 300 mm → 토출관(D=300mm) 신설	1) 기존 5.0m³/min(20HP) × 2EA + 기존 5.0m³/min(30HP) × 1EA → 토출관(D=300mm) 신설 * 하수도시설기준 p295 D= 146√QV = 146√15/3.0 = 326mm = 350mm 여기서 D: 관경(mm) Q: 유량(15.0m³/min) V: 유속(3.0m/sec) © 관련기준상 계산법: D=350mm가 적당함. 2) 신설 5.0m³/min × 1EA → 기존 토출관(D=250mm) 사용
4000 m³	- 개선된 펌프효율 적용(19㎡/min)	- 기존 펌프효율 적용시(17㎡/min)
배제시간	$= {4000 \mathrm{m}^3/(9 \mathrm{m}^1/\mathrm{min} + 10 \mathrm{m}^3/\mathrm{min})}/60$	$= {4000 \mathrm{m}^3/(12 \mathrm{m}^3/\mathrm{min} + 5 \mathrm{m}^3/\mathrm{min})}/60$
(추정치)	= 3.50 HR	= 3.92 HR
특징	 -펌프 양정을 고려한 효율적 토출관로 분리로 펌프의 최대성능 도출 -동일 용량의 펌프 배치로 최대 출력 기대 -노후펌프 교체로 토출성능 향상 기대 	 양정이 상이한 펌프의 연결로 펌프효율 감소 신설관로(관경확대) 설치에 따른 기대효과 미미 * 기존 펌프 조합의 효율저하 발생

<표2-3> 펌프조합에 의한 토출관경 결정(계속)

구 분	1안 (설계안)	2안 (발주처 기본안)
_1_1 11.11	배수 펌프 1대:13,500,000원	배수 펌프 1대:13,500,000원
기자재비	토출 밸브 1대:2,104,220원	토출 밸브 1대:2104,220원
기자재	배수 펌프 1대:801,265원	배수 펌프 1대:801,265원
설치비	토출 밸브 1대:134,960원	토출 밸브 1대:134,960원
배관 자재비	6,703,633원	4,591,627원
배관 설치비	4,586,254원	3,900,388원
합계 (기계부문)	27,830,332원	25,032,460원
적용	©	

- 2펌프시설의 노후화로 교체가 필요한 것으로 판단되며, 기존펌프 성능에 대한 정확한 분석을 위해서는 기존펌프에 대한 추가적인 성능평가에 대한 용역이 수행되어야 할 것으로 판단됨
- 기존 토출배관을 사용할 수 있으며, 기존 펌프의 효율을 높일 수 있는 1안을 추천함

제 3 장 실시설계

3.1 기계설비분야

3.1.1 펌프시설계획

가. 펌프의 대수 및 용량

- 펌프의 설치대수는 다음과 같은 사항을 고려하여 결정하도록 한다.
- 1) 펌프는 될 수 있는대로 최고효율점 부근에서 전달되도록 대수 및 용량을 결정한다.
- 2) 펌프는 용량이 클수록 효율이 높으므로 가능한 대용량의 것으로 한다.
- 3) 수량 변동에 따른 대처는 흡수정 수위변화에 따른 펌프대수 제어로 한다.
- 4) 기존펌프 20HP펌프 2대 교체, 30HP펌프 1대 신설

나. 펌프의 토출구 유속 및 구경

- 펌프장 시설에 있어서 펌프자체의 토출유속은 총배수량에 대하여 설치대수 와 구경을 결정하는 중요한 변수로서 펌프시설의 최적성능 발휘에 큰 영향을 미친다.
- 펌프의 토출유속을 명확하게 규정한 기준은 없고 대부분의 시설기준이 토출, 배관경이나 펌프흡입구경에 대하여 언급되어 있고, 출구 유속은 펌프제작회사의 표준에 따르도록 되어 있는바, 그 기준은 다음과 같다.

<표2-3> 기준에 따른 토출구역 및 유속비교

기준 및 자료	토출 구경(mm) 및 유속(m/sec)
하수도 시설 기준	토출 구경 : 제조회사 표준 흡입구 : 1.2~3.5
일본 양배수 시설 기준	규정치는 없으나 입경 φ1,650의 경우 2.5~3.1 추천
효성 에바라사	소 구경 : 2 이하 대 구경 : 3 이하
일본 에바라사	토출 유속 : 2~3.5

- 상기한 바와같이 펌프제조회사별로 설계의 기본이 되는 비교회전도(Ns)치에 따라 토출구의 유속은 상당한 차이가 있을 뿐만아니라 일정한 유량과 양정에 대하여 각 제조회사별 Ns 적용치가 상이하므로 동일 유량에 대하여 최고효율을 발휘할 수 있는 펌프입경과 유속도 차이가 있다.
- 또한 최근의 펌프설계경향이 펌프의 임펠러에 의해서 발생시킨 유체의 속도에너지 손실이 적어서 고효율의 성능을 발휘할 수 있는 것으로 나타남에 따라 펌프 유출 유속을 2.0~3.0m/초보다 증가시키는 추세이기는 하나, 관내의 속도수두손실증가 및 관 파손등의 문제점을 고려하여 본 계획에선 상기의 값을 기준으로 구경을 계획하였다.

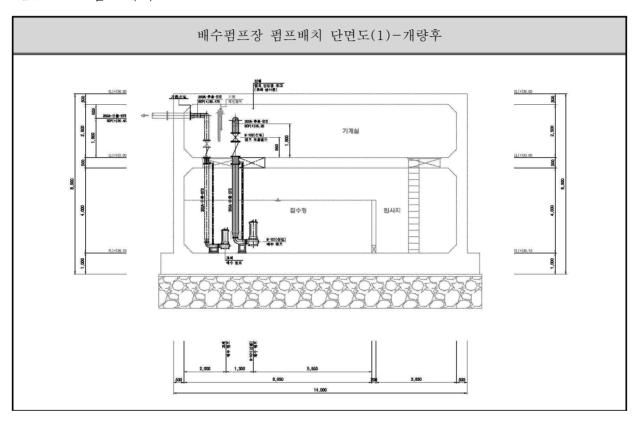
다. 펌프형식 선정

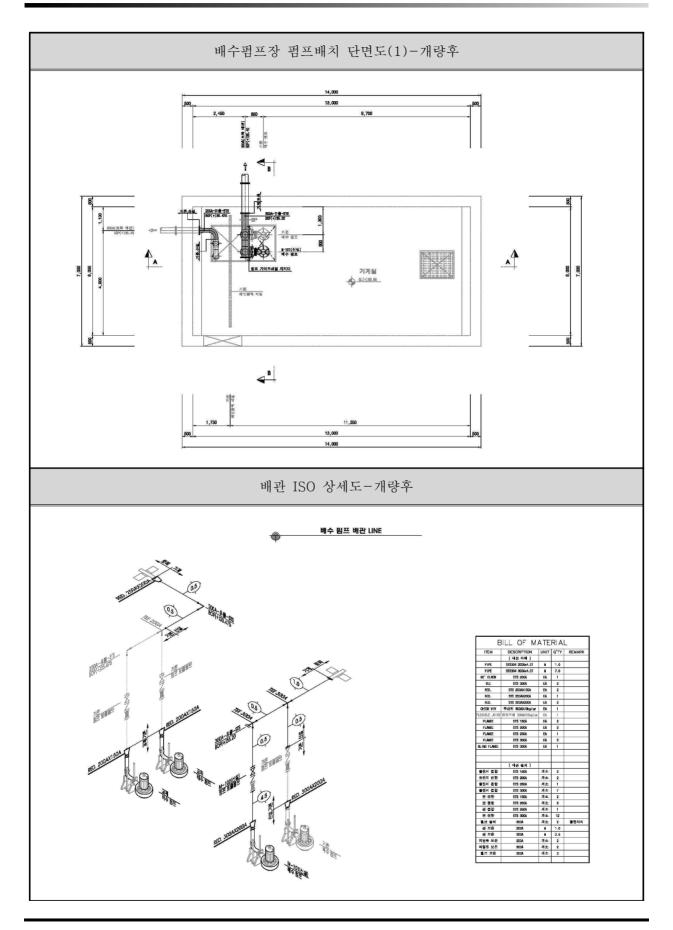
- 펌프의 형식은 토출량, 전양정등에 의해 결정되어지면 빗물펌프장에 설치되는 펌프의 특성은 대용량, 소양정으로 이에 적합한 펌프의 형식은(입, 횡) 축(축, 사)류 및 수중 펌프 이다.
- 본 배수펌프장에 적용할 펌프의 형식은 전양정이 약 9.50m로 펌프제작사의 기종에 따른 DATA를 참고로 펌프들의 각 장·단점을 다음과 같이 비교검토한 후 가장 적절한 펌프를 산정하도록 하였다.

<표2-3> 펌프형식비교

항목	기종	입축사류 펌프	수중사류 펌프	수중오수 펌프
구	조			
양	정	8 ~ 80 m	4 ∼20 m	5 ~ 40 m
유	량	13 ~ 100 m³/min	8 ~ 300 m³/min	0.1 ~ 30 m³/min
비설	누도	500 ~ 1200	800 ~ 3000	100 ~ 500
장	점	 전동기등 전제품을 침수부밖으로 설치할 수 있다. 대용량의 설치 조건에서 효율이 아주 높다. 임펠라가 수중에 있어 캐비테이션의 염려가 적다. 고형물이 혼합된 오수에도 적합하다. 펌프구동용 엔진의 사용이가능하다. 	 토출측 배관 자재비가 절약된다. 설치 면적이 적다. 토출 유속이 적어 마찰 손실이 적다. 축 길이가 짧아 축 회전부위의 고장이 거의 없다. 기동시 만수 조작이 필요 	다. • 설치면적이 적다. • 침수우려가 없다. • 축 길이가 짧아 회전부의 고장이 거의 없다. • 임펠라가 수중에 있어 캐비 테이션의 염려가 적다. • 구동부가 수중에 있어 소음 이 적다. • 기동시 만수 조작이 필요 없으므로 자동운전이 용이하다.
단		 축냉장치 및 윤활장치가 필요하며 부속기기가 많고 윤활유의 소모가 많다. 축길이가 길어 축의 정렬이 잘못된 경우 고장이 심해진다. 사용 양정이 설계양정보다약15% 이상에서 운전할 때 	어 내식성이 강한 재료를 사용해야 한다. • 조건에 따라 효율이 급상승 또는 급강하한다. • 입축사류 펌프에 비해 가격	있다.
유 관리		높 다	낮 다	낮 다
ক্র	율	65 ~75 %	65 ~ 75%	65 ~ 75 %
선	정			0
—				

라. 펌프양정


- 펌프의 전양정은 펌프의 토출수면과 흡입수면의 차에 의한 실양정과 배수 시설의 스크린에서 토출구까지의 손실양정(토출속도수두포함)을 추가하여 결정 된다.
- 수펌프장이 내수위는 계획저수위(L.W.L)에서부터 계획고수위(H.W.L)까지 변화하고 본류 하천의 외수위는 강우특성 및 본류 유역의 현황에 따라 다양하게 변화하게 된다.
- 따라서 계획실양정은 내외수위의 변동이 없는 경우에는 수위차에 의하여 간단히 결정되나 내수위는 변동이 있는 경우 계획 실양정의 결정은 신중히 검 토되어져야 한다.


3.1.2 펌프설비목록

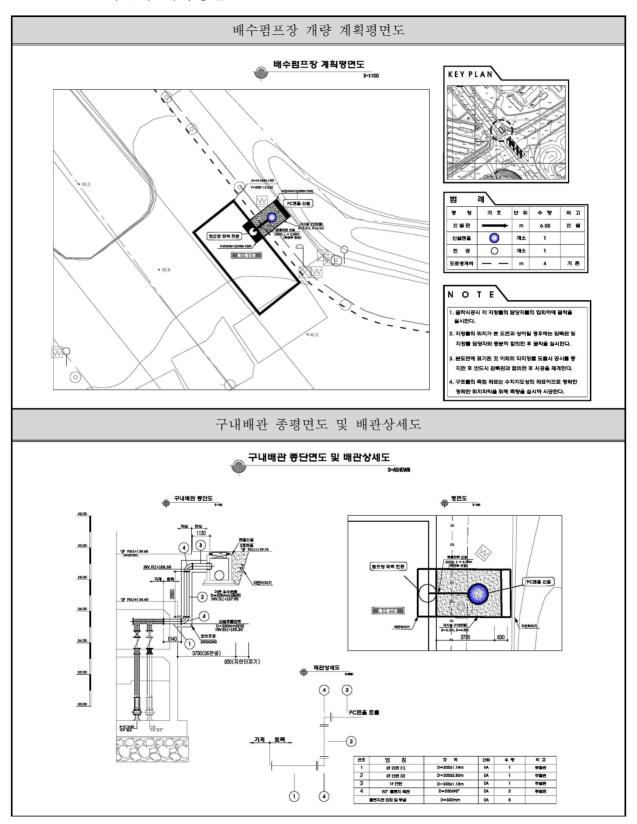
<표2-3> 펌프설비목록

장비	장비 이름	청시 미 그거		수 량	:	동력	н) ¬
번호	상비 이름	형식 및 규격	상용	예비	계	(kw/대)	비고
M-101	배수펌프	자동탈착형 수중오수 펌프 ψ200A 5㎡/min × 15mH, 380V × 3φ	1	1	1	22	신설
M-102	펌프토출밸브	수동 게이트밸브 φ 300mm	1	1	1	_	신설
교체	배수펌프	자동탈착형 수중오수 펌프 ψ200A 5㎡/min × 10mH, 380V × 3φ	2	1	2	15	교체
기존	배수펌프	자동탈착형 수중오수 펌프 ψ150A 5㎡/min × 10mH, 380V × 3φ	2	Н	2	15	철거 (1999년 설치)
기존	배수펌프	자동탈착형 수중오수 펌프 ψ200A 5㎡/min × 15mH, 380V × 3φ	1		1	22	교체 이설 (2005년 5월 설치)
기존	펌프토출밸브	수동 게이트밸브 φ 200mm	2	1	2	_	재사용
기존	펌프토출밸브	수동 게이트밸브 φ 300mm	1	_	1	_	재사용
기존	유지보수용 호이스트	수동 체인블럭 1Ton	1	_	1	_	재사용

- 3.1.3 펌프용량계산
 - 부록참조
- 3.1.4 신설 토출배관 관경산정
 - 부록참조
- 3.1.5 펌프배치도
- <표2-3> 펌프배치도

3.2 토목분야

3.2.1 개요


- 개포지하차도 배수펌프장 토출관로(D300mm)를 추가신설하는 것으로 계획하였음. 따라서 배수펌프장에서 토출되는 관로를 인근 우수관로(D600mm)에 연결하는 하기 위한 시설개요는 다음과 같다.

<표1-1> 토목공사개요

구 분	공 종	사업내용	비고
	토공	토출관로 토공, 맨홀토공	1식
	구조물공	맨홀공(조립식 2호맨홀)	1식
	관로공	1식	
토목공사	가시설공	SK판넬사용 4m	1식
	포장공	아스팔트, 칼라아스콘	1식
	부대공	관보호공, 차선도색, 기존구조물철거(중간슬라브) L형측구 깨기 복구, 안전시설 수목이식	1식

3.2.2 토목공사 개요도

<표1-1> 토목공사 계획평면도

